100=300-16x^2

Simple and best practice solution for 100=300-16x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 100=300-16x^2 equation:



100=300-16x^2
We move all terms to the left:
100-(300-16x^2)=0
We get rid of parentheses
16x^2-300+100=0
We add all the numbers together, and all the variables
16x^2-200=0
a = 16; b = 0; c = -200;
Δ = b2-4ac
Δ = 02-4·16·(-200)
Δ = 12800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12800}=\sqrt{6400*2}=\sqrt{6400}*\sqrt{2}=80\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{2}}{2*16}=\frac{0-80\sqrt{2}}{32} =-\frac{80\sqrt{2}}{32} =-\frac{5\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{2}}{2*16}=\frac{0+80\sqrt{2}}{32} =\frac{80\sqrt{2}}{32} =\frac{5\sqrt{2}}{2} $

See similar equations:

| 10x+50=60 | | y=300-16(2)^2 | | -9=3(g-5) | | y=300-16^2 | | 23x+9(6)=6 | | y=-16(1)^2+300 | | 9-4x=7x-11 | | 2x+2=0+3x | | 23(-9)+9y=6 | | 2x-1=—7 | | 23(-6)+9y=6 | | 3x+9=4-x | | 23(-2)+9y=6 | | -12x^2+(x^+4)^2=16 | | 3x-(5x-12)=8x-(4×-9) | | 0=6-10x | | 21x+16=67 | | (x^2+4)^+32=12x^2+48 | | .01=(t/873.36)-2.15 | | R=(t/873.36)-2.15 | | 30=−5+r | | 700+80=n | | 3x2+4x+8=0. | | 3y(y-3)=y-9 | | 30=−5x | | 8.2x=131.2 | | -(5y+6)-(-4y-7)=-6 | | 69+31+x=180 | | 4x+30=3x+13 | | 8+(-4x)=12 | | 3x^2+5x+6=0. | | (4x-30)+(3x+13)=180 |

Equations solver categories